На правах рукописи

Boune

ВОМПЕ Татьяна Алексеевна

РАЗРАБОТКА И ИССЛЕДОВАНИЕ НИЗКОКОБАЛЬТОВЫХ МАГНИТОТВЁРДЫХ Fe-Cr-Co СПЛАВОВ

Специальность 05.16.01 – Металловедение и термическая обработка металлов и сплавов

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата технических наук

Москва – 2018

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте металлургии и материаловедения им. А. А. Байкова Российской академии наук (ИМЕТ РАН)

Научный руководитель:	Миляев Игорь Матвеевич доктор технических наук, главный научный сотрудник ИМЕТ РАН			
Официальные оппоненты:	Крапошин Валентин Сидорович доктор технических наук, профессор кафедры «Материаловедения» ФГБОУ ВПО «МГТУ им. Н. Э. Баумана»			
	Перминов Александр Сергеевич кандидат физико-математических наук, доцент кафедры «Физического материаловедения» ФГАОУ ВО «НИТУ «МИСиС»			
Ведущая организация:	ФГУП «Центральный научно- исследовательский институт черной металлургии им. И.П. Бардина»			

Защита состоится «<u>11</u>» <u>октября 2018 года в 14 ч 00 мин</u> на заседании Диссертационного совета Д 002.060.01 Института металлургии и материаловедения им. А.А. Байкова РАН по адресу: 119334, г. Москва, Ленинский проспект, 49.

С диссертацией можно ознакомится в библиотеке ИМЕТ РАН и на сайте ИМЕТ РАН <u>http://www.imet.ac.ru</u>. Автореферат диссертации размещен на сайте ИМЕТ РАН <u>http://www.imet.ac.ru</u> и на сайте ВАК <u>http://vak.ed.gov.ru</u>.

Автореферат разослан «____»____ 2018 г.

Ученый секретарь диссертационного совета, доктор технических наук, профессор

Ba

В.М. Блинов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы. Магнитотвёрдые материалы используют для производства постоянных магнитов, в гистерезисных электродвигателях и в носителях магнитной записи.

Постоянные магниты применяют в электронике, робототехнике, навигации, системах безопасности, авиа- и ракетостроении, в медицине. По данным аналитических отчетов консалтинговой компании Infoholic Research (Индия) объем рынка продаж постоянных магнитов в 2016 году составил 15 млрд долларов. По прогнозу он вырастет до 41 млрд долларов к 2022 году.

Магнитотвёрдые материалы на основе системы Fe-Cr-Co отличаются от других магнитотвёрдых материалов высокими значениям механических свойств ($\sigma B \approx 800 - 1000$ МПа). Значения магнитных свойств Fe-Cr-Co сплавов не уступают значениям магнитных свойств литых сплавов Fe-Ni-Al-Co-Cu. При этом Fe-Cr-Co сплавы содержат меньше дорогостоящего кобальта, обладают высокой коррозионной стойкостью до температуры 1300 °C и температурно-временной стабильностью магнитных свойств, имеют высокие рабочие температуры эксплуатации до 500 °C, а также поддаются различным видам обработки металлов давлением (прокатка, штамповка и волочение) и лезвийной обработки (точению, фрезерованию и строганию). Fe-Cr-Co сплавы используют при производстве малогабаритных магнитов, работающих в изделиях, которые испытывают высокие динамические и статические нагрузки, в том числе при высоких температурах эксплуатации.

Традиционно Fe-Cr-Co сплавы получают методами литья. Исследования магнитотвёрдых сплавов, полученных методами порошковой металлургии, ведутся в ИМЕТ РАН с середины 2000-х годов. Метод порошковой металлургии позволяет повысить коэффициент использования металла и снизить трудоемкость изготовления магнитов.

Сплавы Fe-Cr-Co, содержащие 15 и более масс. % кобальта, хорошо изучены и выпускаются промышленно. Современные научные работы направлены на исследование сплавов с содержанием кобальта менее 15 масс. %. При термической обработке низкокобальтовых сплавов возрастает время, которое необходимо для получения высоких значений магнитных свойств. Однако не смотря на более продолжительную термическую обработку, сплавы обладают лучшей пластичностью и замедленной кинетикой фазовых превращений, что позволяет улучшить воспроизводимость магнитных и механических свойств.

Создание низкокобальтовых магнитотвёрдых Fe-Cr-Co сплавов с высоким уровнем магнитных и механических свойств с использованием минимального количества дорогих легирующих компонентов является актуальной научной задачей.

Целью диссертационной работы является разработка новых эффективных экономнолегированных материалов с высоким уровнем магнитных свойств на основе низкокобальтовых магнитотвёрдых сплавов системы Fe-Cr-Co.

Для достижения указанной цели в работе решались следующие задачи:

- 1. выбор легирующих компонентов низкокобальтовых магнитотвёрдых Fe-Cr-Co сплавов с содержанием кобальта от 7 до 13 масс. %;
- 2. изучение фазового и структурного состояния низкокобальтовых магнитотвёрдых Fe-Cr-Co сплавов;
- 3. изучение влияния режимов термической обработки на магнитные гистерезисные свойства низкокобальтовых магнитотвёрдых Fe-Cr-Co сплавов методом планирования эксперимента;
- 4. исследование влияния легирующих компонентов Со, Сг, Мо на фазовые и структурные превращения, на магнитные гистерезисные свойства низкокобальтовых магнитотвёрдых Fe-Cr-Co сплавов.

Методология и методы исследования.

В ходе выполнения работы были использованы современные методы исследования и испытания материалов: рентгенофлуоресцентный, дилатометрический и рентгеноструктурный анализ, метод нейтронной дифракции, оптическая и просвечивающая электронная микроскопия, измерение магнитных свойств, микротвердости, испытания на сжатие.

Научная новизна.

- 1. Впервые установлены зависимости остаточной индукции В_г, коэрцитивной силы H_c, максимального энергетического произведения (BH)_{max} от режимов термомагнитной обработки в интервале температур от 630 до 690 °C и критической скорости охлаждения сплава в магнитном поле от 30 до 90 °C/ч для магнитотвёрдых Fe-Cr-Co сплавов с содержанием кобальта от 7 до 13 масс. %. Полученные аналитические зависимости в виде уравнений регрессии могут быть использованы для определения уровня магнитных свойств новых сплавов.
- 2. Установлено, что содержание кобальта влияет на процесс формирования высококоэрцитивного состояния в низкокобальтовых магнитотвёрдых Fe-Cr-Co сплавах, который идет при температурах ниже 500 °C. На сплаве Fe-Cr-Co с 8 масс. % кобальта, легированных 1 и 3 масс. % Мо, процесс продолжается при температурах 460 °C и 420 °C, соответственно.
- Впервые получены аналитические зависимости влияния содержания Со, Сг, Мо на магнитные гистерезисные свойства магнитотвёрдых Fe-Cr-Co сплавов с 7 – 13 масс. % кобальта в виде регрессионных моделей для выбора химического состава и оценки уровня магнитных свойств.

- Экспериментально установлено, что в магнитотвёрдых Fe-Cr-Co сплавах с 8 – 10 масс. % кобальта низкотемпературный отпуск после основного режима термической обработки увеличивает значение коэрцитивной силы максимально в 1,3 раза, а значение максимального энергетического произведения – в 1,5 раза. Практическая значимость работы.
- Разработаны новые низкокобальтовые магнитотвёрдые сплавы на основе системы Fe-Cr-Co с содержанием хрома 25 – 31 масс. %, кобальта 7 – 13 масс. %, молибдена 0,5 – 4 масс. % и кремния 0,5 масс. %, режимы термической и термомагнитной обработок, которые обеспечивают высокий уровень магнитных свойств: остаточная индукция В_г до 1,35 Тл, коэрцитивная сила H_c до 45,0 кА/м, максимальное энергетическое произведение (BH)_{max} – 35,7 кДж/м³.
- Магнитотвёрдые сплавы с 8 масс. % кобальта (26Х8КЗМС, 26Х8КМС, 30Х8КЗМС, 30Х8КМС) с остаточной индукцией В_г до 1,3 Тл, коэрцитивной силой H_c до 45,0 кА/м, максимальным энергетическим произведением (BH)_{max} – 34,1 кДж/м³ могут использоваться вместо промышленных сплавов 28Х10К, 28Х10КА (ГОСТ 24897-81), 52К10Ф (ГОСТ 10994-74) и Arnokrome 3 (Arnold Magnetic Technologies, США) для изготовления постоянных магнитов для гистерезисных электродвигателей.
- Магнитотвёрдые сплавы с 10 13 масс. % кобальта (26Х12КМС, 28Х10К4МС, 28Х13К2МС) с остаточной индукцией В_r до 1,34 Тл, коэрцитивной силой H_c до 44,5 кА/м, максимальным энергетическим произведением (BH)_{max} – 35,7 кДж/м³ могут использоваться вместо сплава 25Х15КА (ГОСТ 24897-81) для изготовления постоянных магнитов.
- 4. Полученные аналитические зависимости влияния содержания Со, Сг, Мо на уровень магнитных гистерезисных свойств магнитотвёрдых Fe-Cr-Co сплавов с 7 13 масс. % кобальта в виде регрессионных моделей являются основой для выбора составов и режимов, и могут быть использованы на предприятиях по производству постоянных магнитов (АО «Спецмагнит», ОАО НПО «Магнетон» и др.), в том числе при оптимизации параметров технологического процесса изготовления магнитов.
- Получен патент РФ № 2557852 на «Способ термической обработки магнитотвёрдых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес %», позволяющий повышать значения магнитных гистерезисных свойств. Положения, выносимые на защиту:
- 1. химические составы новых экономнолегированных магнитотвёрдых сплавов на основе системы Fe-Cr-Co с 7 13 масс. % кобальта;
- 2. особенности фазового и структурного состояния магнитотвёрдых Fe-Cr-Co сплавов с 7 13 масс. % кобальта;

- 3. определение влияния режимов термомагнитной обработки на магнитные гистерезисные свойства магнитотвёрдых Fe-Cr-Co сплавов методом планирования эксперимента;
- 4. особенности влияния низкотемпературного отпуска на процесс формирования высококоэрцитивного состояния и на рост магнитных гистерезисных свойств;
- 5. влияние содержания легирующих компонентов (Со, Сг, Мо) на фазовые и структурные превращения, уровень магнитных гистерезисных свойств магнитотвёрдых Fe-Cr-Co сплавов в виде аналитических зависимостей.

Достоверность и надежность полученных результатов основаны на использовании современных методов исследований, проведением измерений на сертифицированном оборудовании, большом количестве экспериментальных данных, статистической обработке результатов. Результаты работы апробированы и опубликованы в реферируемых журналах, а также представлены на российских и международных конференциях.

Личный вклад автора. Автор принимала участие в постановке задач, проведении экспериментов и анализе результатов. Экспериментальные данные получены лично автором либо с её непосредственным участием. Автор принимала участие в написании статей и в докладах на конференциях.

Апробация работы. Основные результаты работы были представлены на российских и международных конференциях и семинарах: Школа ФГБУ «ПИЯФ» по (2012,конденсированного состояния 2013. г. Санкт-Петербург); физике III конференция с элементами молодежной школы Всероссийская молодёжная «Функциональные наноматериалы и высокочистые вещества» (2012, г. Москва); Международная научная конференция, посвященная 40-летию КарГУ имени академика Е.А. Букетова (2012, г. Караганда); Международная балтийская школа по физике твердого тела (2012-2013, г. Калининград); Международная конференция с элементами научной школы для молодежи «Функциональные наноматериалы и высокочистые вещества» (2012, 2014, г. Суздаль); Всероссийская молодежная научная школа «Химия и технология полимерных и композиционных материалов» (2012, г. Москва); Всероссийская молодежная научная конференция с международным участием «Инновации в материаловедении» (2013, 2015, г. Москва); V Всероссийская конференция по наноматериалам (2013, г. Звенигород); Международный симпозиум по магнетизму (MISM) (2014, г. Москва); Международные научные чтения им. чл.корр. РАН И.А. Одинга «Механические свойства современных конструкционных материалов» (2014, г. Москва); XV Всероссийская школа-семинар по проблемам (2014,физики конденсированного состояния вещества г. Екатеринбург); Всероссийская школа-конференция студентов, аспирантов и молодых ученых «Материалы и технологии XXI века» (2014, г. Казань); Национальная молодежная научная школа для молодых ученых, аспирантов и студентов по современным методам исследований наносистем и материалов «Синхротронные и нейтронные исследования» (2015,г. Москва); V Международная научно-практическая конференция «Инновации В материаловедении И металлургии» (2015,г. Екатеринбург); Международный молодежный научный форум «Ломоносов» (2016, г. Москва); Международная научная студенческая конференция МНСК (2016, г. Новосибирск); Международная конференция по постоянным магнитам (2013, 2017, г. Суздаль); Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов» (2011-2017, г. Москва).

Публикации. По теме диссертации опубликованы 33 научные публикации, в том числе 3 статьи в рецензируемых журналах, рекомендованных ВАК РФ, а также получен патент РФ № 2557852.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, выводов и списка литературы. Работа изложена на 155 страницах, содержит 74 рисунка, 61 таблицу и 38 формул. Список цитированной литературы состоит из 105 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной работы, сформулированы цель и задачи работы.

В первой главе представлен обзор литературных данных по магнитотвёрдым сплавам. Рассмотрены основные характеристики магнитотвёрдых сплавов на основе системы Fe-Cr-Co, их диаграммы состояния, влияние легирующих элементов на магнитные свойства, а также формирование высококоэрцитивного состояния. На основе анализа литературных данных были сформулированы цель и задачи исследования.

Во второй главе описаны материалы и методы исследований. В качестве объектов исследования были выбраны магнитотвёрдые сплавы Fe-Cr-Co с содержанием хрома 25 – 31 масс. %, кобальта 7 – 13 масс. % и молибдена 0,5 – 4 масс. % (таблица 1).

Низкокобальтовые магнитотвёрдые сплавы легировали молибденом в количестве до 4 масс. %, влияющим на образование σ - фазы, с целью повышения магнитных гистерезисных свойств. Кремний вводили как ферритообразующий элемент с целью повышения устойчивости высокотемпературного α – твердого раствора к образованию нежелательной γ - фазы при закалке от высоких температур.

Кинетику выделения немагнитной σ - фазы, присутствие в сплаве которой нежелательно, изучали на сплаве 33Х12К2Д с содержанием хрома 33 масс. %, кобальта 12 масс. % и меди 2 масс. %.

Обозначение сплава*	Cr	Co	Mo	В _r , Тл	H _c , кА/м	(BH) _{max} , кДж/м ³
31X10K2MC	31	10	2,0	1,11	35,3	17,9
30X12K3MC	30	12	3,0	1,19	41,9	24,4
30X12KMC	30	12	1,0	1,18	41,9	25,9
30X8K3MC	30	8	3,0	1,10	30,1	14,9
30X8KMC	30	8	1,0	1,22	29,2	20,0
28X13K2MC	28	13	2,0	1,22	39,7	24,9
28X10K4MC	28	10	4,0	1,16	44,5	22,8
28X10K2MC	28	10	2,0	1,23	35,5	24,7
28X10KMC	28	10	0,5	1,30	33,1	25,3
28X7K2MC	28	7	2,0	1,05	15,1	6,4
26X12K3MC	26	12	3,0	1,25	45,0	29,9
26X12KMC	26	12	1,0	1,34	42,5	35,7
26X8K3MC	26	8	3,0	1,22	12,9	6,0
26X8KMC	26	8	1,0	1,20	28,0	18,1
25X10K2MC	25	10	2,0	1,35	30,8	20,1

Таблица 1 – Химический состав по шихте (масс. %) и максимальные магнитные свойства низкокобальтовых Fe-Cr-Co сплавов

* Примечание. Химические элементы сплава обозначены следующими буквами: X – хром, К – кобальт, М – молибден, С – кремний.

Сплавы также содержали 0,5 масс. % Si, остальное Fe и его технические примеси.

Сплавы получали методом порошковой металлургии. Были использованы промышленные марки высокочистых порошков железа (ВС), хрома (ПХС-1), кобальта (ПК-1Н), молибдена (МПЧ) и кремния (Кр00). Порошки смешивали в турбулентном смесителе С 2.0 «Турбула». Компактирование осуществляли холодным способом путем одностороннего прессования на ручном прессе KNUTH-130042 c использованием стеарата цинка в разъёмной матрице с внутренним диаметром 13,6 мм при давлении 600 МПа. Спекание спрессованных образцов проводили в течение 2,5 ч при 1420 °C в шахтной печи СШВ-1,25/24-И1 в вакууме 10⁻²Па. При использовании схемы одностороннего прессования разница после спекания в размерах нижнего и верхнего диаметров образца составляла не более 0,2 мм. Химический состав образцов изучали на рентгенофлуоресцентном спектрометре ARL OPTIM'X.

Образцы изучали в анизотропном состоянии после термомагнитной обработки, которую проводили в лабораторной печи с панцирным электромагнитом в магнитном поле более 240 кА/м, температуру поддерживали и контролировали с помощью программируемого ПИД-регулятора ОВЕН ТРМ 251 и хромель-алюмелевой термопары. Термическую обработку проводили в лабораторных печах муфельного типа ПЛ 10/12,5 с программируемым прибором ПРОТАР 101 и платино-родиевой термопарой. Магнитные гистерезисные свойства (В_г, H_c, (BH)_{max}) измеряли на

гистерезисграфе Permagraph L EP-3, а намагниченность насыщения 4*π*Is – на гистерезисграфе УИ.ФИ-400\5-003. Исследование механических свойств проводили на испытательной машине Instron 3382 (ГОСТ 25.503-97), на испытательном прессе ИП-1000-1 (ГОСТ 10180), на твердомере Instron DIGI-TESTOR 930 методом Виккерса (ГОСТ 2999-75) и на динамическом микротвердомере DUH-211S (ГОСТ 8.748-2011). Температурные интервалы фазовых превращений в сплавах исследовали на высокотемпературном дилатометре DIL 402 С7G. Фазовый состав и структуру сплавов изучали методом рентгеновского структурного и фазового анализа на дифрактометре Ultima IV при излучении СиКа и на дифрактометре ДРОН-4 в СоКа – излучении; нейтронные дифракционные исследования проводили на суперпозиционном мультидетекторном нейтронном дифрактометре ДИСК; микроструктуру высококоэрцитивного состояния изучали методами просвечивающей электронной микроскопии на микроскопе JEM 1400.

В работе применяли метод планирования эксперимента. При обработке результатов экспериментов использовали программы Statgraphics Plus 5.0 и Statistica 10.

В третьей главе приведены результаты изучения фазовых превращений в сплавах; изучено влияние режимов термомагнитной обработки на магнитные гистерезисные свойства сплавов; изучены особенности формирования высококоэрцитивного состояния сплавов; рассмотрена микроструктура сплавов в высококоэрцитивном состоянии; определены механические свойства.

В настоящее время общепринятой теорией формирования высококоэрцитивного состояния (ВКС) в магнитотвёрдых сплавах системы Fe-Cr-Co является спинодальный распад ОЦК высокотемпературного α – твердого раствора на изоморфные ОЦК α_1 и α_2 твердые растворы, где α_1 обогащен Fe и Co, а α_2 – Cr. Слабомагнитные частицы α_2 -фазы периодически расположены в сильномагнитной матрице α_1 -фазы. Наноразмерность сильномагнитных частиц α_1 -фазы обуславливает их однодоменный характер и тем самым высокое значение коэрцитивной силы H_c сплава. Распад происходит в процессе термической обработки и последующих отпусков.

В качестве характеристик процесса, протекающих в высокотемпературном αтвёрдом растворе, можно рассмотреть процесс образования σ-фазы и процесс упорядочения по типу Fe-Co, как возможную причину влияния на величину коэрцитивной силы сплавов, а следовательно на длительность цикла TMO.

При температурах выше начала ТМО скорость образования σ-фазы резко зависит от температуры и содержания кобальта. С понижением содержания кобальта скорость образования σ-фазы в заданных температурных интервалах уменьшается и, как следствие, увеличивается время цикла ТМО.

Для сокращения цикла термической обработки в работе низкокобальтовые сплавы дополнительно легировали молибденом, который является α - образующим и

сильным σ - образующим элементом, не создает конкурирующий процесс типа Fe-Mo, замедляющий формирование высококоэрцитивного состояния.

Дилатометрическим методом исследования было показано, что температура начала спинодального распада в сплаве 28Х13К2МС составляет 670 °C, а сплава 28Х7К2МС – 630 °C (рисунок 1).

Рисунок 1 – Скорость удлинения образцов сплава 28Х7К2МС, 28Х10К2МС, 28Х13К2МС в процессе нагрева (а) и охлаждения (б)

Методами рентгеноструктурного анализа и измерения твердости было определено фазовое состояние сплавов в интервале температур 500 – 1300 °C. Все образцы рассматриваемых сплавов подвергали закалке на однофазное состояние от температуры 1300 °C в воде и отпускали в интервале температур от 1250 °C до 550 °C в течение 30 минут, после чего закаливали в воде. Зависимости твердости от температуры отпуска сплава имеют общий характер (рисунок 2).

Рисунок 2 – Зависимости твердости от температуры отпуска сплавов 28Х7К2МС, 28Х10К2МС, 28Х13К2МС

Твердость после отпуска в интервале температур 550 – 600 °C выше, чем после закалки от температуры 1300 °C из-за протекающего в α – фазе процесса расслоения. Наибольшее значение твердости на сплаве 28Х10К2МС достигается при температуре 550 °C в ходе дисперсионного твердения α – фазы, и составляет 383 ± 25 кгс/мм² HV₃₀.

Кинетику выделения немагнитной о - фазы изучали на сплаве 33X12К2Д с большим содержанием хрома (33 масс. %) и кобальта (12 масс. %) методами рентгеноструктурного фазового анализа И измерениями твердости сплава. Обнаружено, что процесс выделения о - фазы в сплаве ЗЗХ12К2Д происходит в температурном интервале 650 – 800 °C. Скорость выделения σ - фазы максимальна при 750 °С (рисунок 3). Период решетки σ - фазы в зависимости от времени отпуска практически не изменяется в пределах ошибки, что, по-видимому, свидетельствует о постоянном химическом составе выделяющейся о - фазы. После отпуска в течение 4 часов при температуре 750 °C периоды решетки σ - фазы составили: a = 0,8772 и c = 0,4572 нм.

Рисунок 3 – Изменение объемной доли σ-фазы в сплаве 33X12К2Д в процессе отпуска при разных температурах (цифры у кривых)

Наличие σ - фазы в исследуемых магнитотвёрдых сплавах после отпуска при разных температурах в течение 30 минут не было обнаружено. Данные о температурных интервалах фазовых превращений были использованы при выборе режимов термической (TO) и термомагнитной обработок (TMO).

В качестве параметров, оказывающих влияние на уровень магнитных гистерезисных свойств, на основании результатов предварительных экспериментов была выбрана температура начала ТМО T_2 (фактор A) и скорость охлаждения v_1 (фактор B) сплава в магнитном поле (рисунок 4).

Рисунок 4 – Схема термической обработки Fe-Cr-Co сплавов

В качестве нулевого уровня эксперимента для всех сплавов приняли температуру $T_2 = 660 \text{ °C}$ и $v_1 = 60 \text{ °C/ч}$; шаг варьирования для T_2 был выбран 20 °C, а для $v_1 - 20 \text{ °C/ч}$.

Матрица планирования эксперимента (таблица 2) для двухфакторной задачи была выбрана в виде ротатабельного центрального композиционного плана 2² с двумя звездными точками со значением уровней фактора -1,41 и 1,41.

№ режима	Фал в безразмерной	кторы системе координат	Факторы в натуральном масштабе		
10	А	В	v₁, °С/ч	T ₂ , °C	
1	0	0	60	660	
2	0	0	60	660	
3	1	1	80	680	
4	-1,41	0	32	660	
5	0	1,41	60	688	
6	-1	-1	40	640	
7	-1	1	40	680	
8	1,41	0	88	660	
9	0	0	60	660	
10	0	-1,41	60	632	
11	1	-1	80	640	

Таблица 2 – Ма	рица планирования	эксперимента
----------------	-------------------	--------------

Все образцы закаливали в воде от температуры 1250 °С в течение 15 минут. Затем образцы нагревали до температуры T₁ = 720 °С и охлаждали в магнитном поле с

температуры T₂ с критической скоростью охлаждения v₁ до температуры T₃ = 600 °C. Дальнейшее охлаждение проводили без магнитного поля до температуры T₄ = 500 °C со скоростью v₂ = 8 °C/ч.

Были получены уравнения регрессии в виде зависимости магнитных гистерезисных свойств (В_r, H_c, (ВН)_{max}) от факторов термической обработки для всех сплавов, приведенных в таблице 1.

В таблице 3 приведены экспериментальные значения магнитных гистерезисных свойств В_r, H_c, (BH)_{max} сплавов 28Х7К2МС, 28Х10К2МС, 28Х13К2МС после термической обработки.

N⁰	<u>№</u> 28X7K2MC			28	3X10K2	МС	28X13K2MC		
режима ТО	В _r , Тл	Н _с , кА/м	(BH) _{max} , кДж/м ³	В _r , Тл	Н _с , кА/м	(BH) _{max} , кДж/м ³	В _r , Тл	Н _с , кА/м	(BH) _{max} , кДж/м ³
1	0,93	8,9	2,4	1,16	35,5	22,6	1,19	34,8	21,0
2	1,02	13,9	4,7	1,16	35,5	22,6	1,19	34,8	21,0
3	0,89	5,7	1,3	1,23	30,4	21,2	1,22	35,0	24.4
4	1,04	12,9	4,0	1,19	31,2	20,5	1,19	23,1	13,6
5	0,26	1,2	0,1	1,22	24,5	14,2	1,22	29,8	19,4
6	0,76	3,9	0,7	1,23	35,4	24,7	1,20	34,4	21,5
7	0,97	9,8	2,4	1,18	30,0	19,4	1,21	27,1	17,1
8	0,64	3,7	0,6	1,22	28,1	18,6	1,20	36,0	23,5
9	1,05	15,1	6,4	1,16	35,5	22,6	1,19	34,8	21,0
10	0,72	3,6	0,7	1,13	20,1	11,1	1,20	33,8	22,8
11	0,51	2,9	0,4	1,19	33,5	22,5	1,18	39,7	24,9

Таблица 3 – Магнитные гистерезисные свойства сплавов

Уравнения регрессии H_c и (BH)_{max} для сплава 28Х7К2МС в кодированных переменных (A и B), включающие только значимые коэффициенты, имеют вид (1-2):

$$Hc = 12,7-5,08 \times B^2$$
 (1)

$$(BH)max = 4,5-2,09 \times B^2$$
 (2)

Значимость коэффициентов уравнений регрессии определена по стандартизованным диаграммам Парето (уровень значимости $P < \alpha = 0,05$) (рисунок 5).

Значение остаточной индукции B_r не зависит от выбранных режимов обработки. Средние значения B_r, H_c, (BH)_{max} составляют 0,99 Тл, 12,7 кА/м и 4,5 кДж/м³, соответственно.

Рисунок 5 – Диаграммы Парето для B_r (а), H_c (б) и (BH)_{max} (в) сплава 28Х7К2МС

Для оценки адекватности уравнений регрессии был использован коэффициент детерминации \mathbb{R}^2 , показывающий, какая доля дисперсии результативного признака объясняется влиянием независимых переменных. По данному показателю определяли степень соответствия уравнения регрессии реальным данным. Математические модели с коэффициентом детерминации больше 70 % имеют высокую значимость и считаются работоспособными, т. е. могут быть использованы для прогнозирования результатов в рассматриваемой области фазового пространства.

Значение скорректированного коэффициента детерминации R^2 для уравнений регрессии H_c и (BH)_{max} составляет 80,4 % и 74,1 %, соответственно, т. е. предложенные математические модели являются работоспособными и их можно использовать для прогнозирования результатов. Наибольшее влияние на значение H_c и (BH)_{max} оказывает квадратичный фактор B (скорость охлаждения).

По полученным поверхностям отклика и их поперечным сечениям оценивали оптимальные режимы термообработки (рисунок 6). Для получения максимального значения H_c необходимо охлаждение сплава в магнитном поле от температуры 660-670 °C до 600 °C со скоростью 40-50 °C/ч.

Рисунок 6 – Поверхность отклика и его сечение для H_c (а, б) и для (BH)_{max} (в, г) сплава 28Х7К2МС

Уравнение регрессии В_г для сплава 28Х10К2МС имеет вид (3):

$$Br = 1,16 + 0,03 \times A^2 \tag{3}$$

Рисунок 7 – Диаграммы Парето для B_r (a), H_c (б) и (BH)_{max} (в) сплава 28Х10К2МС

Средние значения B_r, H_c, (BH)_{max} на сплаве 28Х10К2МС составляют 1,16 Тл, 35,5 кА/м, 22,6 кДж/м³, соответственно. Значение коэрцитивной силы H_c и максимального энергетического произведения (BH)_{max} не зависят от выбранных режимов обработки (рисунок 7 б, в).

Значение скорректированного коэффициента детерминации R² для уравнения B_r составляет 72,5 %. Математическая модель является работоспособной и ее можно использовать для прогнозирования результатов эксперимента в рассматриваемой области фазового пространства.

По поверхности отклика и его поперечному сечению оценен оптимальный режим термической обработки для получения максимального значения B_r – охлаждение сплава в магнитном поле от температуры 620 – 640 °C до 600 °C со

скоростью 20 – 30 °C/ч и охлаждение от температуры 680 – 700 °C до 600 °C со скоростью 90 – 100 °C/ч.

Рисунок 8 – Поверхность отклика и его сечение для B_r (a, б) сплава 28Х10К2МС

Уравнения регрессии В_г, Н_с, (ВН)_{тах} для сплава 28Х13К2МС имеют вид (4-6):

$$Br = 1,19 + 0,008 \times B + 0,009 \times A \times B + 0,007 \times B^{2}$$
(4)

$$Hc = 34,8 + 3,93 \times A$$
 (5)

$$(BH)max=21+3,09\times A \tag{6}$$

Средние значения B_r, H_c, (BH)_{max} сплава 28Х13К2МС составляют 1,19 Тл, 34,8 кА/м, 21 кДж/м³, соответственно. Диаграммы Парето приведены на рисунке 9.

Рисунок 9 – Диаграммы Парето для Br (a), Hc (б) и (BH)_{max} (в) сплава 28Х13К2МС

Значение коэффициента детерминации R^2 для уравнения B_r , H_c и (BH)_{max} составляет 91,4 %, 85,4 % и 90,3 %, соответственно, т.е. математическая модель является работоспособной.

На рисунке 10 приведены поверхности отклика B_r, H_c и (BH)_{max}, а также поперечные сечения этих поверхностей в фазовых пространствах.

Оптимальным режимом ТМО для получения максимальных значений H_c и (BH)_{max} на сплаве 28X13K2MC является охлаждение сплава в магнитном поле от температуры 670 – 690 °C до 600 °C со скоростью 80 – 100 °C/ч.

Рисунок 10 – Поверхности отклика и их сечения для B_r (а, б), H_c (в, г) и (BH)_{max} (д, е) сплава 28Х13К2МС

Значения максимальных магнитных свойств, полученных в работе на всех исследованных сплавах, приведены в таблице 1.

В ходе оптимизации режимов ТО было обнаружено, что процесс формирования высококоэрцитивного состояния в низкокобальтовых магнитотвёрдых сплавах продолжается при температуре ниже 500 °C. На сплавах с 8 – 10 масс. % кобальта наблюдается повышение уровня магнитных свойств: коэрцитивной силы H_c в 1,3 раза и максимального энергетического произведения (BH)_{max} в 1,5 раза.

На рисунке 11 приведены графики зависимости коэрцитивной силы H_c от времени отпуска при разных температурах для сплавов 30Х8КМС и 30Х8КЗМС.

Рисунок 11 – Зависимость H_c от времени отпуска для сплавов 30Х8КМС и 30Х8КЗМС при разных температурах

Значение коэрцитивной силы растет с понижением температуры отпуска от 500 °C до 420 °C. Это связано с процессом расслоения α - твёрдого раствора. На сплаве 30X8K3MC с содержанием 3 масс. % молибдена H_c выше, чем на сплаве 30X8KMC. Процесс формирования высококоэрцитивного состояния продолжается при температуре 420 °C для сплава 30X8KMC.

Исследование сплавов в высококоэрцитивном состоянии проводили методами рентгеноструктурного, нейтронного и электронномикроскопического анализов.

На рентгенограмме и нейтронограмме сплава 30Х8КМС, обработанного по режиму № 11 (таблица 2), включающему низкотемпературный отпуск в интервале температур от 500 °C до 420 °C, видны пики α – твердого раствора на основе Fe (рисунок 12). Период решетки а = 0,2876 нм. Магнитные свойства: В_r = 1,2 Тл, H_c = 36,3 кА/м, (BH)_{max} = 28,8 кДж/м³. Микроструктура сплава 30Х8КМС показана на рисунке 13.

Рисунок 12 – Рентгенограмма (а) и нейтронограмма (б) сплава 30Х8КМС после термической обработки № 11 и низкотемпературного отпуска от 500 °С до 420 °С

Рисунок 13 – Микроструктура сплава 30Х8КМС после термической обработки № 11 и низкотемпературного отпуска от 500 °С до 420 °С, снятая вдоль (а) и поперек (б) направления магнитного поля

На фотографии видны светлые выделения α_1 - фазы, разделенные темными слоями α_2 - фазы. В сплаве наблюдается модулированная структура, которая соответствует структуре высококоэрцитивного состояния. Средний размер α_1 - фазы 20 - 40 нм. Рассчитанные индексы отражения плоскостей HKL (110), (211), (420), (310) соответствуют ОЦК решётке.

Механические свойства исследуемых сплавов изучали при испытании на сжатие при комнатной температуре. Предел текучести $\sigma^{cx}_{0.2}$ для сплавов 31Х10К2МС, 28Х13К2МС и 28Х10К2МС равен 564, 620 и 585 МПа, соответственно. Более высокие значения механических свойств сплавов 30Х8КМС и 30Х8К3МС приведены в таблице 4.

Обозначение сплава	HV ₃₀ , кгс/мм ²	σ ^{сж} в, МПа	σ ^{сж} _{0.2} , МПа
30X8KMC	490 ± 10	1935 ± 20	805 ± 8
30X8K3MC	668 ± 10	1980 ± 20	840 ± 8

Таблица 4 – Механические свойства сплавов

Методом инструментального индентирования была проведена оценка прочностных характеристик сплавов 30Х8КМС и 30Х8К3МС без разрушения образцов. Модуль упругости Е_{it} составляет 119 и 130 ГПа, соответственно, а работа упругой деформации η_{it} – 27 % и 30 %. Кривые нагружения показаны на рисунке 14.

Рисунок 14 – Кривые нагружения сплавов 30Х8КМС и 30Х8КЗМС

Четвертая глава посвящена исследованию влияния легирующих компонентов Со, Сг и Мо на фазовые и структурные превращения, на магнитные гистерезисные свойства низкокобальтовых магнитотвёрдых Fe-Cr-Co сплавов.

В таблице 5 приведены экспериментальные значения максимальных магнитных свойств Fe-Cr-Co сплавов, полученных в работе.

Максимальное значение $B_r = 1,35$ Тл было получено на сплаве 25X10К2МС, значение $H_c = 45$ кА/м на сплаве 26X12К3МС, а значение (BH)_{max} = 35,7 кДж/м³ на сплаве 26X12КМС.

		-	
Обозначение сплава	В _r , Тл	Н _с , кА/м	(BH) _{max} , кДж/м ³
31X10K2MC	1,11 (1,14)*	35,3 (35,0)	17,9 (22,8)
30X12K3MC	1,19 (1,21)	41,9 (43,2)	24,4 (23,8)
30X12KMC	1,18 (1,21)	41,9 (43,2)	25,9 (23,8)
30X8K3MC	1,10 (1,13)	30,1 (26,8)	14,9 (17,6)
30X8KMC	1,22 (1,13)	29,2 (26,8)	20,0 (21,8)
28X13K2MC	1,22 (1,29)	39,7 (48,8)	24,9 (33,6)
28X10K4MC	1,16 (1,22)	44,5 (35,0)	22,8 (19,3)
28X10K2MC	1,23 (1,22)	35,5 (35,0)	24,7 (22,8)
28X10KMC	1,30 (1,22)	33,1 (35,0)	25,3 (26,3)
28X7K2MC	1,05 (1,15)	15,1 (21,2)	6,4 (12,0)
26X12K3MC	1,25 (1,31)	45,0 (43,2)	29,9 (30,4)
26X12KMC	1,34 (1,31)	42,5 (43,2)	35,7 (34,6)
26X8K3MC	1,22 (1,23)	12,9 (26,8)	6,0 (11,0)
26X8KMC	1,20 (1,23)	28,0 (26,8)	18,1 (15,2)
25X10K2MC	1,35 (1,30)	30,8 (35,0)	20,1 (22,8)

Таблица 5 – Экспериментальные и рассчитанные значения магнитных гистерезисных свойств Fe-Cr-Co сплавов

* экспериментальные данные (значения рассчитанные по уравнениям регрессии указаны в скобках)

В таблице 6 приведены рассчитанные значения коэффициентов уравнений регрессии, описывающих B_r, H_c и (BH)_{max}. Фактор А – содержание хрома в сплаве, В – кобальта и С – молибдена.

	X 0	A	В	C	A^2	AB	AC	B^2	BC	C ²
Br	1,22	-0,05	0,04	-0,03	0,006	-0,01	-0,005	-0,03	0,001	0,006
H _c	35,3	1,6	8,2	0,5	-0,6	-2,8	1,7	-2,6	2,1	1,5
(BH) _{max}	22,8	-0,6	6,4	-2,1	-0,9	-3,3	1,4	-2,0	1,2	0,9

Таблица 6 – Коэффициенты уравнений регрессии В_г, H_c и (BH)_{max}

Значимость коэффициентов уравнений регрессии, в том числе их положительный или отрицательный эффект, определены по стандартизованным диаграммам Парето (рисунок 15).

Рисунок 15 – Диаграммы Парето для $B_r(a)$, $H_c(6)$ и (BH)_{max} (в)

Для уравнения регрессии B_r статистически значим линейный коэффициент фактора A (уровень значимости P меньше $\alpha = 0,05$ и равен 0,0063) и фактора B (P = 0,0315), т. е. линейный член описывающий содержания хрома и кобальта в сплаве; для уравнения регрессии H_c значим линейный коэффициент фактора B (P = 0,0006) – содержания кобальта; для уравнения регрессии (BH)_{max} значимы линейный коэффициент фактора B (P = 0,0002), линейный коэффициент фактора C (P = 0,00392), а также сочетание факторов A и B (P = 0,0206), т. е. содержания хрома и кобальта. Зависимость B_r и H_c от выбранных факторов варьирования носит линейный характер, а для (BH)_{max} – нелинейный.

Уравнения регрессии в кодированных переменных (А, В и С), включающие только значимые коэффициенты, имеют вид (7-9):

$$Br = 1,22 - 0,05 \times A + 0,04 \times B$$
, (7)

$$Hc=35,3+8,2\times B$$
, (8)

$$(BH)max = 22,8+6,4 \times B - 2,1 \times C - 3,3 \times A \times B$$
. (9)

Средние значения B_r, H_c, (BH)_{max} на сплавах с 7-13 масс. % кобальта составляют 1,22 Тл, 35,3 кА/м и 22,8 кДж/м³, соответственно. С увеличением содержания кобальта в сплаве растет значение остаточной индукции B_r и коэрцитивной силы H_c. Содержание хрома отрицательно влияет на значение остаточной индукции B_r, с его увеличением значение остаточной индукции падает, а значение максимального энергетического произведения (BH)_{max} растёт. Содержание молибдена в Fe-Cr-Co сплаве влияет только на значение максимального энергетического произведения (BH)_{max} падает.

Увеличение кобальта в сплаве на 1 масс. % приводит к росту магнитных свойств: H_c на 4,1 кА/м, B_r на 0,02 Тл, а (BH)_{max} на 1,55 кДж/м³. Легирование молибденом в количестве от 1 до 3 масс. % снижает значение (BH)_{max} сплава на 4,2 кДж/м³.

Уравнения регрессии в натуральных переменных имеют вид (10-12):

$$Br = 0,02 \times C_{Co} - 0,025 \times C_{Cr} + 1,72 , \qquad (10)$$

$$Hc = 4,1 \times C_{Co} - 6$$
, (11)

$$(BH)max = 8,25 \times C_{Cr} + 26,3 \times C_{Co} - 2,1 \times C_{Mo} - 0,825 \times C_{Cr} \times C_{Co} - 236 , \qquad (12)$$

где С_{Со}, С_{Сг}, С_{мо} – содержание в масс. % кобальта, хрома и молибдена, соответственно.

Максимальные значения B_r, H_c, (BH)_{max} можно получать на сплавах с содержанием кобальта 12-13 масс. % и хрома 24,6 – 29,3 масс. % – 1,41 Тл, 52,4 кА/м и 42,3 кДж/м³. С увеличением содержания Мо в сплаве до 3 масс. % значение коэрцитивной силы H_c растет.

Полученные математические модели работоспособны, так как значение коэффициентов детерминации R^2 больше 70 % для уравнений B_r , H_c и (BH)_{max}: 85,6 %, 90,2 % и 94,0 %, соответственно. Их можно использовать для прогнозирования результатов эксперимента.

Результаты значений магнитных свойств, рассчитанных по уравнениям регрессии (10-12), приведены в таблице 5. Дано сравнение с экспериментальными значениями.

Сечения поверхностей отклика для B_r, H_c и (BH)_{max} при факторе C = 0 на рисунке 16 позволяют оценить уровень магнитных свойств Fe-Cr-Co сплавов в зависимости от их химического состава.

Полученные регрессионные зависимости важны при оценке и прогнозировании магнитных гистерезисных свойств, в том числе при разработке новых низкокобальтовых магнитотвёрдых Fe-Cr-Co сплавов с заданными свойствами и новых технологических процессов термической обработки.

Рисунок 16 – Поверхности отклика (фактор C = 0) B_r (a), H_c (б) и (BH)_{max} (в) для Fe-Cr-Co сплавов с 7-13 масс. % кобальта

При сравнении магнитных свойств исследованных низкокобальтовых магнитотвёрдых материалов со свойствами материалов, выпускаемых промышленно, сплавы с содержанием кобальта 8 масс. % (26Х8КМС и 26Х8КЗМС, 30Х8КМС и 30Х8КЗМС) и сплавы с 10–13 масс. % кобальта (28Х10К4МС, 26Х12КМС и 28Х13К2МС) не уступают промышленным сплавам 52К10Ф (52 масс. % кобальта) и 25Х15К (15 масс. % кобальта), соответственно, с большим содержанием кобальта.

ОСНОВНЫЕ ВЫВОДЫ

1. Исследованы новые низкокобальтовые магнитотвёрдые сплавы на основе системы Fe-Cr-Co с содержанием хрома 25 – 31 масс. %, кобальта 7 – 13 масс. %, молибдена 0,5 – 4 масс. % и 0,5 масс. % кремния. Разработаны режимы термической и термомагнитной обработки для создания новых эффективных экономнолегированных материалов с высоким уровнем магнитных свойств.

2. Для магнитотвёрдых сплавов с 8 масс. % кобальта (26Х8КМС и 26Х8КЗМС, 30Х8КМС и 30Х8КЗМС) достигнуты оптимальные значения магнитных гистерезисных свойств: остаточная индукция B_r до 1,3 Тл, коэрцитивная сила H_c до 45,0 кА/м, максимальное энергетическое произведение (BH)_{max} – 34,1 кДж/м³, а для сплавов с 10 – 13 масс. % кобальта (28Х10К4МС, 26Х12КМС и 28Х13К2МС): B_r до 1,34 Тл, H_c до 44,5 кА/м, (BH)_{max} – 35,7 кДж/м³, сравнимые с промышленными марками с большим содержанием кобальта.

3. Показано, что с увеличением содержания кобальта от 7 масс. % до 13 масс. % температура спинодального распада повышается с 630 °C до 670 °C в исследуемых сплавах.

4. Скорость образования немагнитной σ-фазы для сплава 33Х12К2Д максимальна при 750 °C. Присутствие σ - фазы в исследуемых экономнолегированных низкокобальтовых магнитотвёрдых Fe-Cr-Co сплавах после отпуска в течение 30 минут при разных температурах не было установлено.

5. Методом регрессионного анализа построены поверхности отклика и получены аналитические зависимости магнитных гистерезисных свойств от температуры термомагнитной обработки (в интервале от 630 до 690 °C) и критической скорости охлаждения сплава (в интервале от 30 до 90 °C/ч) в магнитном поле для исследуемых низкокобальтовых экономнолегированных магнитотвёрдых Fe-Cr-Co сплавов.

6. Получены аналитические зависимости остаточной индукции B_r , коэрцитивной силы H_c , максимального энергетического произведения (BH)_{max} от содержания хрома 25–31 масс. %, кобальта 7–13 масс. % и молибдена 0,5–4 масс. % в магнитотвёрдых Fe-Cr-Co сплавах. Увеличение кобальта на 1 масс. % приводит к росту магнитных свойств: H_c на 4,1 кА/м, B_r на 0,02 Тл, а (BH)_{max} на 1,55 кДж/м³. Легирование сплавов молибденом от 1 до 3 масс. % снижает значение (BH)_{max} сплава на 4,2 кДж/м³.

7. Установлено, что в сплавах 30Х8КМС и 30Х8К3МС, легированных молибденом от 1 до 3 масс. %, процесс формирования высококоэрцитивного состояния продолжается при температуре 460 °C и 420 °C, соответственно.

8. Показано, что после термомагнитной обработки низкотемпературный отпуск в интервале температур от 500 °C до 420 °C приводит в среднем к росту коэрцитивной силы до 1,3 раза, а максимального энергетического произведения до 1,5 раз в экономнолегированных магнитотвёрдых Fe-Cr-Co сплавов с 8 – 10 масс. % кобальта.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ В РЕЦЕНЗИРУЕМЫХ ЖУРНАЛАХ

1. **Вомпе Т.А.**, Миляев И.М., Юсупов В.С. Магнитные свойства магнитотвёрдых сплавов Fe-Cr-10 масс.% Со // Перспективные материалы. – 2013. – № 4. – С. 59 – 63.

2. **Vompe T.A.**, Milyaev I.M., Yusupov V.S. Magnetic hysteresis properties of the hard magnetic Fe-25%Cr-10%Co-2%Mo-0,5%Si powder alloy // Letters on materials. – 2015. – 5(4). – P. 424 – 427.

3. **Вомпе Т.А.**, Миляев И.М., Юсупов В.С. Магнитные свойства магнитотвёрдого сплава Fe-28%Cr-13,4%Co-2%Mo-0,5%Si / Т.А. Вомпе, И.М. Миляев, В.С. Юсупов // Металловедение и термическая обработка металлов. – 2016. – № 10 (736). – С. 34 – 38.

ПАТЕНТ

Патент 2557852 Российская Федерация. Способ термической обработки магнитотвёрдых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес % / М.И. Алымов, И.М. Миляев, А.Б. Анкудинов, Т.А. Вомпе, В.А. Зеленский, В.С. Юсупов. – № 2014102868/02; заявл. 29.01.2014; опубл. 27.07.2015, Бюл. № 21. – 5 с.

МАТЕРИАЛЫ КОНФЕРЕНЦИЙ И ДРУГИЕ ПУБЛИКАЦИИ

1. Вомпе Т. А., Устюхин А. С., Миляев И. М., Зеленский В. А. Влияние режимов термомагнитной обработки на магнитные гистерезисные свойства магнитотвердых порошковых Fe-Cr-Co сплавов с содержанием кобальта 12 и 16 масс. % // Ученые записки Забайкальского государственного университета. Сер. Физика, математика, техника, технология. – 2016. – Т. 11. – № 3. – С. 77 – 84.

2. **Vompe, T.A.** Dilatometric analysis of phase transformations in Fe-Cr-Co Hard Magnetic Materials with low cobalt content / T.A. Vompe, I.M. Milyaev // Moscow International Symposium on Magnetism (MISM). 29 June – 3 July 2014, Moscow. / Book of Abstracts. – Moscow 2014. – P. 298.

3. Вомпе Т.А., Миляев И.М., Юсупов В.С. Магнитные гистерезисные свойства порошкового магнитотвёрдого сплава Fe-31,4Cr-10Co-2Mo-0,5Si // Тезисы XX международной конференции по постоянным магнитам. – ООО «Издательство Перо». – 2015. – С. 86.

4. **Вомпе Т.А.** Влияние основных и легирующих элементов на величину коэрцитивной силы низкокобальтовых магнитотвёрдых Fe-Cr-Co сплавов // Материалы Международного молодежного научного форума «Ломоносов-2016» / Отв. Ред. И.А. Алешковский, А.В. Андриянов, Е.А. Антипов. [Электронный ресурс] – М.: МАКС Пресс, 2016.

5. **Вомпе Т.А.** Магнитные и механические свойства магнитотвёрдого сплава на основе системы Fe-Cr-Co с пониженным содержанием кобальта // Материалы 54-й Международной научной студенческой конференции МНСК-2016: Новые конструкционные материалы / Новосиб. Гос. Техн. Ун-т. Новосибирск. – 2016. – С. 58.

6. **Вомпе Т.А.** Особенности термической обработки магнитотвёрдых низкокобальтовых Fe-Cr-Co сплавов // XIV Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов». Москва. 17-20 октября 2017 г. / Сборник трудов. – М.: ИМЕТ РАН, 2017. – С. 21.